Hypercyclic operators, Gauss measures and Polish dynamical systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical System and Semi-Hereditarily Hypercyclic Property

In this paper we give conditions for a tuple of commutative bounded linear operators which holds in the property of the Hypercyclicity Criterion. We characterize topological transitivity and semi-hereiditarily of a dynamical system given  by an n-tuple of operators acting on a separable infinite dimensional Banach space .

متن کامل

Hypercyclic Behaviour of Operators in a Hypercyclic C0-Semigroup

Let {Tt}t≥0 be a hypercyclic strongly continuous semigroup of operators. Then each Tt (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic vectors with the semigroup. This answers in the affirmative a natural question concerning hypercyclic C0-semigroups. The analogous result for frequent hypercyclicity is also obtained.

متن کامل

About Subspace-Frequently Hypercyclic Operators

In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic  operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...

متن کامل

Operators with Common Hypercyclic Subspaces

We provide a reasonable sufficient condition for a family of operators to have a common hypercyclic subspace. We also extend a result of the third author and A. Montes [22], thereby obtaining a common hypercyclic subspace for certain countable families of compact perturbations of operators of norm no larger than one.

متن کامل

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2015

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-015-1194-4